HW ONE, MTH 512, Spring 2015, Due date: March 7, 2015 at 3pm

Ayman Badawi

QUESTION 1. (i) Let $v_{1}, v_{2}, \ldots, v_{n}$ be independent elements of a vector space V. Assume there is a $w \in V$ such that $w \notin \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Prove that $w, v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent.
(ii) Given v_{1}, v_{2}, v_{3} are independent elements of a vector space V. Given a, b, c, d are some nonzero constants. Prove that $a v_{1}, b v_{1}+c v_{2}, v_{1}+v_{2}+d v_{3}$ are linearly independent elements of V.
(iii) Let $M=\left\{f(x) \in P_{7} \mid f(1)=0\right.$ or $\left.f(-1)=0\right\}$. Is M a subspace of P_{7} ? prove or disprove.[Recall that P_{n} is the set of all polynomials of degree $<n$].
(iv) Let $M=\left\{f(x) \in P_{7} \mid f(1)=0\right.$ and $\left.f(-1)=0\right\}$. Is M a subspace of P_{7} ? prove or disprove.
(v) Let D be a subspace of a vector space V such that $D \neq V$. Given $\operatorname{dim}(V)=m$. Prove that $\operatorname{dim}(D)<m$.
(vi) Are $(2,0,-2,3),(-2,0,3,-3),(0,0,2,0)$ independent elements of R^{3} ? Show the work.
(vii) Let $v_{1}, v_{2}, \ldots, v_{m}$ be any elements in a vector space V. Prove that $\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ is a subspace of V.
(viii) Given $v_{1}=(0,1,2), v_{2}=(1,0,4)$ are independent elements of R^{3}. Is $w=(3,2,16) \in \operatorname{span}\left\{v_{1}, v_{2}\right\}$? If no, show the work. If yes, then find a, b such that $w=a v_{1}+b v_{2}$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

T OR F

Ayman Badawi

QUESTION 1. just write T for true or \mathbf{F} for false

(i) If A is a 4×4 matrix and $C_{A}(x)=x^{2}(x-3)^{2}$, then the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ has infinitely many solutions.
(ii) If A is a 4×4 matrix and 1 is an eigenvalue of A, then there is a nonzero 4×10 matrix B, such that $A B=B$.
(iii) It is impossible to construct a linear transformation $T: R^{2} \rightarrow R^{4}$ such that $\operatorname{dim}(\operatorname{Range}(T))=3$.
(iv) If A is a 4×5 matrix and $\operatorname{Rank}(A)=4$, then the system $A X=\left[\begin{array}{l}2 \\ 5 \\ 7 \\ 9\end{array}\right]$ has infinitely many solutions
(v) If 6 nonzero distinct points in R^{4} are given, then 4 points of the given points are independent.
(vi) If $T: R^{3} \rightarrow R$ is a linear transformation and $T(1,4,7)=\pi$, then $\operatorname{dim}(\operatorname{Ker}(T))=2$.
(vii) $\operatorname{span}\left\{x^{2}+1,6 x+3, x^{2}+2 x+2\right\}=P_{3}$ (note that my definition of P_{3} is the set of all polynomials of degree strictly less than 3 , and hence $\operatorname{dim}\left(P_{3}\right)=3$)
(viii) If A is a 3×3 matrix such that $\operatorname{det}(A)=0$, then the system $A X=\left[\begin{array}{l}2 \\ 5 \\ 0\end{array}\right]$ has infinitely many solutions
(ix) If A is a 3×3 invertible matrix, then A is diagnolizable.
(x) If A is a 4×4 matrix and the system $A X=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 7\end{array}\right]$ is inconsistent (i.e., it has no solution), then the system $A X=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ has infinitely many solutions

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Ayman Badawi

QUESTION 1. (i) Let $T: V \longrightarrow W$ be a linear transformation (of course V and W are vector spaces). Let $d \in$ $\operatorname{Range}(T)$. Hence $T\left(v_{1}\right)=d$ for some $v_{1} \in V$. Let $M=\{v \in V \mid T(v)=d\}$. Prove that $M=v_{1}+\operatorname{Ker}(T)$. i.e., show that $M=\left\{v_{1}+a \mid a \in \operatorname{Ker}(T)\right\}$.
(ii) Let $T: P_{3} \longrightarrow R$ be a linear transformation such that $T(5 x)=0, T\left(-3 x^{2}\right)=9, T(10)=20$.
a. Find a basis for $\operatorname{Kert}(T)$.
b. Find $T\left(6 x^{2}+9 x-13\right)$.
c. Describe all elements in V such that each has image (under T) equals to 13 .
(iii) Let $T: V \longrightarrow W$ be a linear transformation, and F be a subspace of V. Prove that $T(F)$ is a subspace of W.
(iv) Let $M=\left\{f(x) \in P_{3} \mid \int_{0}^{1} f(x) d x=0\right\}$. Prove that M is a subspace of P_{3}. Find a basis for M.
(v) Assume K, L are proper subspaces V such that $K \nsubseteq L$ and $L \nsubseteq K$. Prove that $K \cap L$ is a subspace of V, but $K \cup L$ is never a subspace of V.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW four, MTH 512, Spring 2015, Due date: March 28, 2015 at 3pm

Ayman Badawi

QUESTION 1. Let $T: R^{2 \times 2} \longrightarrow P_{3}$ such that $T\left(\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]\right)=\left(a_{1}+a_{4}\right) x^{2}+\left(a_{3}+a_{2}\right)$.
(i) Show that T is a linear transformation.
(ii) Find the standard matrix representation of T.
(iii) Find a basis for Range(T).
(iv) Find a basis for $\operatorname{Ker}(\mathrm{T})$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW Five, MTH 512, Spring 2015, Due date: April 18, 2015 at 3:20pm

Ayman Badawi

QUESTION 1. Let $V=C(-\infty, \infty)$ be the set of all functions such that for every $n \geq 1$, the $n^{t h}$ derivative is continuous on R. Let $T: V \longrightarrow V$ such that $T(f(x))=-f^{(2)}(x)-2 f^{\prime}(x)$ (where $f^{(2)}(x)$ indicates the second derivative of $f(x)$). It is trivial to show that T is a linear transformation. So do not show that.
(i) Prove that T has infinitely many eigenvalues.[Hint: in basic Diff. Eq course, to solve $y^{(2)}+a y^{\prime}+b y=0$, we set the equation $m^{2}+a m+b=0$, if m_{1}, m_{2} are two real distinct solutions, then the solution to the Diff. Eq. is $\operatorname{span}\left\{e^{m_{1} x}, e^{m_{2} x}\right\}$, what about if $m_{1}=m_{2}$?, what about if m_{1} is imaginary number? so it is about time, being a graduate student, to review your basic Diff. Eq. course]
(ii) For each eigenvalue a of T, write E_{a} as a span of some basis.

QUESTION 2. Let $T: R^{3} \longrightarrow R^{3}$ such that $T\left(a_{1}, a_{2}, a_{3}\right)=\left(-3 a_{3}, a_{1}+5 a_{3}, a_{2}-a_{3}\right)$. It is trivial to show that T is a linear transformation (do not show that).
(i) Find all eigenvalues of T (I believe that 1 is one of the eigenvalues).
(ii) For each eigenvalue a, E_{a} as a span of some basis.
(iii) Is T diagnolizable? If yes, tell me why. If no, tell me why

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW six, MTH 512, Spring 2015, Due date: April 29, 2015 at 6:00 pm

Ayman Badawi

QUESTION 1. Let V be a vector space and W_{1}, W_{2} are subspaces of V. Then $W_{1}+W_{2}=\left\{a+b \mid a \in W_{1}, b \in W_{2}\right\}$.
(i) Prove that $W_{1}+W_{2}$ is a subspace of V.
(ii) Assume $\operatorname{dim}\left(W_{1}\right)=n, \operatorname{dim}\left(W_{2}\right)=m$. Prove that $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(w_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.
(iii) Assume $\operatorname{dim}(V)=5, \operatorname{dim}\left(W_{1}\right)=3, \operatorname{dim}\left(W_{2}\right)=4$ and $W_{1} \nsubseteq W_{2}$. Find $\operatorname{dim}\left(W_{1}+W_{2}\right)$ and $\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.
(iv) Let $F=\{(a, a+b, 4 b, 0) \mid a, b \in R\}$ and $K=\left\{(c, 2 c+d, 4 c-d, 2 d)_{3} d \in R\right\}$. Clearly F and K are subspaces of R^{4}. Write $W_{1}+W_{2}$ as a span of some basis.
(v) Let $T: V \longrightarrow V$ be a linear transformation. Let a be a nonzero number. It is trivial to check that $a T$ is a linear transformation. If b is an eigenvalue of T. Prove that $a b$ is an eigenvalue of $a T$ (Hence if b is an eigenvalue of a matrix A , then $a b$ is an eigenvalue of aA)
(vi) Let $T: V \longrightarrow V$ be a linear transformation such that $\operatorname{dim}(V)=n<\infty$. Prove that T is bijection if and only if T is one-to-one (i.e., injective)
(vii) Let $T: R^{7} \longrightarrow R^{7}$ be a linear transformation such that 9 is an eigenvalue of T and $\operatorname{dim}\left(E_{9}\right)=6$. Prove that either $T-4 I$ or $T-5 I$ is a bijection linear transformation from V ONTO V. [Hint: A deceiving hint is to observe that 4 $+5=9:))$)]

QUESTION 2. The Fibonacci sequence $F_{0}, F_{1}, F_{2}, \ldots$ is defined by $F_{0}=0, F_{1}=1 ; F_{2}=1$; and $F_{n}=F_{n-2}+F_{n-1}$. Use the concept of linear transformation to prove that $F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$. In order to do that, follow the following steps.
(i) Let $T: R^{2} \longrightarrow R^{2}$ such that $T(a, b)=(b, a+b)$. Then T is clearly a linear transformation (do not show that)
(ii) Show that $T^{n}(0,1)=\left(F_{n}, F_{n+1}\right)$ [use math induction. First show it is true for $n=2$. Assume it is true for $n=m$. Prove it for $n=m+1$]
(iii) Show that T is diagnolizable.
(iv) Now use (iii), to find $T^{n}(0,1)$. [note that if $M=Q D Q^{-1}$, where D is a diagonal matrix, then $T^{n}(0,1)=$ $M^{n}\left[\begin{array}{l}0 \\ 1\end{array}\right]=Q D^{n} Q^{-1}\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Now, the Formula for F_{n} should be observed.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW 7, MTH 512, Spring 2015, Due date: May 9, 2015 at 3:00 pm

Ayman Badawi

QUESTION 1. (i) The companion matrix of a polynomial $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ is the $n \times n$ matrix F such that its rows determined as follows $R_{1}=\left(0,0, \ldots,-a_{0}\right), R_{2}=\left(1,0,0, \ldots,-a_{1}\right), R_{3}=\left(0,1,0,0, \ldots,-a_{2}\right)$, $R_{n}=\left(0,0,0, \ldots, 1,-a_{n-1}\right)$. Prove that $m_{F}(x)=C_{F}(x)=f(x)$. [Hint use the fact that every polynomial over the complex is linearly factored, to find $C_{F}(x)$ use the last column of $x I_{n}-F$ and use $C_{F}(x)=\operatorname{det}\left(x I_{n}-F\right)$]
(ii) Let F be the companion matrix of $f(x)=(x-3)^{3}(x+2)^{2}$. Then F is similar to a matrix J in Jordan-form. Find J.
(iii) Recall our definition of N_{m}. Let $A=N_{5}^{2}$. Find the Jordan form of A. Let $B=N_{4}^{3}$. Find the Jordan form of B.
(iv) Let $A=\left[\begin{array}{cccc}0 & -16 & 0 & 0 \\ 1 & 8 & 0 & 0 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 1 & 5\end{array}\right]$. Find the Jordan-form of A.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW 8, MTH 512, Spring 2015, Due date: May 16, 2015 at 3:00 pm

Ayman Badawi

QUESTION 1. (i) Let $<,>$ be an inner product on a vector space V. Suppose that v_{1}, v_{2} are NONZERO elements of V such that $v_{1} \perp v_{2}$. Prove that v_{1}, v_{2} are independent.
(ii) Let $<,>$ be the normal dot product on R^{3}. Find two nonzero independent elements in R^{3} that are not orthogonal.
(iii) Let E be a subspace of a vector space V and assume that $<,>$ is an inner product on V. Then $E^{\perp}=\{x \in V \mid x \perp e$ for every $e \in E\}$.
a. Prove that E^{\perp} is a subspace of V.
b. Find $E \cap E^{\perp}$.
c. Let $B=\left\{w_{1}, \ldots, w_{k}\right\}$ be a basis for E. We know $E=\operatorname{span}\left\{w_{1}, \ldots, w_{k}\right\}$. Prove that $E^{\perp}=\left\{y \in V \mid y \perp w_{i}\right.$ for each $\mathrm{i}, 1 \leq i \leq k\}$.
d. Assume that $B=\left\{w_{1}, \ldots, w_{k}\right\}$ is an orthogonal a basis for E. Let $v \in E^{\perp}$ such that $v \neq O_{V}$. Prove that $v=w+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{k} w_{k}$ for some nonzero $w \notin E$ and for some constants $c_{1}, \ldots, c_{k} \in R$.
e. (converse of (d)). Let $B=\left\{w_{1}, \ldots, w_{k}\right\}$ be an orthogonal basis for E. Let $w \notin E$. Prove that $v=w-$ $\operatorname{proj}_{w_{1}}^{(w)}-\operatorname{proj}_{w_{2}}^{(w)}-\cdots-\operatorname{proj}_{w_{k}}^{(w)} \in E^{\perp}$ (Note that in this part, it seems that I calculated the c_{1}, \ldots, c_{k} in part (d), also this part, give you an algorithm on how to construct an orthogonal basis for E^{\perp}).
f. If V is finite dimensional, say has dimension n, prove that $\operatorname{dim}\left(E^{\perp}\right)=n-\operatorname{dim}(E)$. Hence $E+E^{\perp}=V$ and $\operatorname{dim}\left(E+E^{\perp}\right)=n[$ Hint: use part (e)]
(iv) Let $<,>$ be the inner product on $V=C[0, \pi / 2]$ defined by $<f_{1}(x), f_{2}(x)>=\int_{0}^{\pi / 2} f_{1}(x) f_{2}(x) d x$. Let $E=$ $\operatorname{span}\{2, \sin (x), \cos (x)\}$. Find an orthogonal basis for E.(see class notes)
(v) Let A be a nonzero $n \times m$ matrix. Let $E=\operatorname{Row}(A)$. We know that $\operatorname{Row}(\mathrm{A})$ is a subspace of R^{m}. Under the normal dot product on R^{m}, it is trivial to see (by staring and by part (c)) that $N u l(A)=E^{\perp}$. Use this fact, to find all vectors in R^{4} that are orthogonal to the vectors $v_{1}=(1,-1,2,4), v_{2}=(-1,1,-1,8) \in R^{4}$ (here we still using the normal dot product on R^{4}).[Hint: form a matrix A with two rows v_{1}, v_{2}. Then $\operatorname{Nul}(A)$ is the set of all such vectors
(vi) Let Let $<,>$ be an inner product on a vector space V. Let $u, v \in V$. Prove that $(\|u+v\|)^{2}+(\|u-v\|)^{2}=$ $2\|u\|^{2}+2\|v\|^{2}$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

