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HW ONE, MTH 512, Spring 2015, Due date: March 7, 2015 at 3pm

Ayman Badawi

QUESTION 1. (i) Let v1, v2, ..., vn be independent elements of a vector space V . Assume there is a w ∈ V such that
w 6∈ span{v1, v2, ..., vn}. Prove that w, v1, v2, ..., vn are linearly independent.

(ii) Given v1, v2, v3 are independent elements of a vector space V . Given a, b, c, d are some nonzero constants. Prove
that av1, bv1 + cv2, v1 + v2 + dv3 are linearly independent elements of V .

(iii) Let M = {f(x) ∈ P7 | f(1) = 0 or f(−1) = 0}. Is M a subspace of P7? prove or disprove.[ Recall that Pn is the
set of all polynomials of degree < n].

(iv) Let M = {f(x) ∈ P7 | f(1) = 0 and f(−1) = 0}. Is M a subspace of P7? prove or disprove.

(v) Let D be a subspace of a vector space V such that D 6= V . Given dim(V ) = m. Prove that dim(D) < m.

(vi) Are (2, 0,−2, 3), (−2, 0, 3,−3), (0, 0, 2, 0) independent elements of R3? Show the work.

(vii) Let v1, v2, ..., vm be any elements in a vector space V . Prove that span{v1, ..., vm} is a subspace of V .

(viii) Given v1 = (0, 1, 2), v2 = (1, 0, 4) are independent elements of R3. Is w = (3, 2, 16) ∈ span{v1, v2}? If no, show
the work. If yes, then find a, b such that w = av1 + bv2.
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T OR F

Ayman Badawi

QUESTION 1. just write T for true or F for false

(i) If A is a 4× 4 matrix and CA(x) = x2(x− 3)2, then the system AX =


0
0
0
0

 has infinitely many solutions.

(ii) If A is a 4× 4 matrix and 1 is an eigenvalue of A, then there is a nonzero 4× 10 matrix B, such that AB = B.

(iii) It is impossible to construct a linear transformation T : R2 → R4 such that dim(Range(T )) = 3.

(iv) If A is a 4× 5 matrix and Rank(A) = 4, then the system AX =


2
5
7
9

 has infinitely many solutions

(v) If 6 nonzero distinct points in R4 are given, then 4 points of the given points are independent.

(vi) If T : R3 → R is a linear transformation and T (1, 4, 7) = π, then dim(Ker(T )) = 2.

(vii) span{x2 +1, 6x+3, x2 +2x+2} = P3 (note that my definition of P3 is the set of all polynomials of degree strictly
less than 3, and hence dim(P3) = 3)

(viii) If A is a 3× 3 matrix such that det(A) = 0, then the system AX =

2
5
0

 has infinitely many solutions

(ix) If A is a 3× 3 invertible matrix, then A is diagnolizable.

(x) If A is a 4 × 4 matrix and the system AX =


−2
1
0
7

 is inconsistent (i.e., it has no solution), then the system

AX =


0
0
0
0

 has infinitely many solutions

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com



Name—————————————–, ID ———————–

MTH 512 Advanced Linear Algebra Spring 2015, 1–1 © copyright Ayman Badawi 2015

HW three, MTH 512, Spring 2015, Due date: March 28, 2015 at 3pm

Ayman Badawi

QUESTION 1. (i) Let T : V −→ W be a linear transformation (of course V and W are vector spaces). Let d ∈
Range(T ). Hence T (v1) = d for some v1 ∈ V . Let M = {v ∈ V | T (v) = d}. Prove that M = v1 +Ker(T ). i.e.,
show that M = {v1 + a | a ∈ Ker(T )}.

(ii) Let T : P3 −→ R be a linear transformation such that T (5x) = 0, T (−3x2) = 9, T (10) = 20.

a. Find a basis for Kert(T).

b. Find T (6x2 + 9x− 13).

c. Describe all elements in V such that each has image (under T) equals to 13.

(iii) Let T : V −→W be a linear transformation, and F be a subspace of V . Prove that T (F ) is a subspace of W .

(iv) Let M = {f(x) ∈ P3 |
∫ 1

0 f(x) dx = 0}. Prove that M is a subspace of P3. Find a basis for M .

(v) Assume K,L are proper subspaces V such that K 6⊆ L and L 6⊆ K. Prove that K ∩L is a subspace of V , but K ∪L
is never a subspace of V .
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HW four, MTH 512, Spring 2015, Due date: March 28, 2015 at 3pm

Ayman Badawi

QUESTION 1. Let T : R2×2 −→ P3 such that T (

[
a1 a2

a3 a4

]
) = (a1 + a4)x2 + (a3 + a2).

(i) Show that T is a linear transformation.

(ii) Find the standard matrix representation of T .

(iii) Find a basis for Range(T).

(iv) Find a basis for Ker(T).
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HW Five, MTH 512, Spring 2015, Due date: April 18, 2015 at 3:20pm

Ayman Badawi

QUESTION 1. Let V = C(−∞,∞) be the set of all functions such that for every n ≥ 1, the nth derivative is continuous
on R. Let T : V −→ V such that T (f(x)) = −f (2)(x)− 2f ′(x) (where f (2)(x) indicates the second derivative of f(x)).
It is trivial to show that T is a linear transformation. So do not show that.

(i) Prove that T has infinitely many eigenvalues.[Hint: in basic Diff. Eq course, to solve y(2) + ay′ + by = 0, we
set the equation m2 + am + b = 0, if m1, m2 are two real distinct solutions, then the solution to the Diff. Eq. is
span{em1x, em2x}, what about if m1 = m2?, what about if m1 is imaginary number? so it is about time, being a
graduate student, to review your basic Diff. Eq. course]

(ii) For each eigenvalue a of T , write Ea as a span of some basis.

QUESTION 2. Let T : R3 −→ R3 such that T (a1, a2, a3) = (−3a3, a1 + 5a3, a2 − a3). It is trivial to show that T is a
linear transformation (do not show that).

(i) Find all eigenvalues of T (I believe that 1 is one of the eigenvalues).

(ii) For each eigenvalue a, Ea as a span of some basis.

(iii) Is T diagnolizable? If yes, tell me why. If no, tell me why
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HW six, MTH 512, Spring 2015, Due date: April 29, 2015 at 6:00 pm

Ayman Badawi

QUESTION 1. Let V be a vector space and W1,W2 are subspaces of V . Then W1 +W2 = {a+ b | a ∈W1, b ∈W2}.

(i) Prove that W1 +W2 is a subspace of V .

(ii) Assume dim(W1) = n, dim(W2) = m. Prove that dim(W1 +W2) = dim(w1) + dim(W2)− dim(W1 ∩W2).

(iii) Assume dim(V ) = 5, dim(W1) = 3, dim(W2) = 4 and W1 6⊆W2. Find dim(W1 +W2) and dim(W1 ∩W2).

(iv) Let F = {(a, a+ b, 4b, 0) | a, b ∈ R} and K = {(c, 2c+ d, 4c− d, 2d),̧d ∈ R}. Clearly F and K are subspaces of
R4. Write W1 +W2 as a span of some basis.

(v) Let T : V −→ V be a linear transformation. Let a be a nonzero number. It is trivial to check that aT is a linear
transformation. If b is an eigenvalue of T . Prove that ab is an eigenvalue of aT (Hence if b is an eigenvalue of a
matrix A, then ab is an eigenvalue of aA)

(vi) Let T : V −→ V be a linear transformation such that dim(V ) = n < ∞. Prove that T is bijection if and only if T
is one-to-one (i.e., injective)

(vii) Let T : R7 −→ R7 be a linear transformation such that 9 is an eigenvalue of T and dim(E9) = 6. Prove that either
T − 4I or T − 5I is a bijection linear transformation from V ONTO V . [Hint: A deceiving hint is to observe that 4
+ 5 = 9 :))) ]

QUESTION 2. The Fibonacci sequence F0, F1, F2, ... is defined by F0 = 0, F1 = 1;F2 = 1; and Fn = Fn−2 + Fn−1.
Use the concept of linear transformation to prove that Fn = 1√

5

(
( 1+
√

5
2 )n − ( 1−

√
5

2 )n
)

. In order to do that, follow the
following steps.

(i) Let T : R2 −→ R2 such that T (a, b) = (b, a+ b). Then T is clearly a linear transformation (do not show that)

(ii) Show that Tn(0, 1) = (Fn, Fn+1)[ use math induction. First show it is true for n = 2. Assume it is true for n = m.
Prove it for n = m+ 1]

(iii) Show that T is diagnolizable.

(iv) Now use (iii), to find Tn(0, 1). [ note that if M = QDQ−1, where D is a diagonal matrix, then Tn(0, 1) =

Mn

[
0
1

]
= QDnQ−1

[
0
1

]
. Now, the Formula for Fn should be observed.
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HW 7, MTH 512, Spring 2015, Due date: May 9, 2015 at 3:00 pm

Ayman Badawi

QUESTION 1. (i) The companion matrix of a polynomial f(x) = xn+ an−1x
n−1 + ...+ a1x+ a0 is the n×n matrix

F such that its rows determined as follows R1 = (0, 0, ...,−a0), R2 = (1, 0, 0, ...,−a1), R3 = (0, 1, 0, 0, ...,−a2),
Rn = (0, 0, 0, ..., 1,−an−1). Prove that mF (x) = CF (x) = f(x). [Hint use the fact that every polynomial over the
complex is linearly factored, to find CF (x) use the last column of xIn − F and use CF (x) = det(xIn − F )]

(ii) Let F be the companion matrix of f(x) = (x− 3)3(x+ 2)2. Then F is similar to a matrix J in Jordan-form. Find
J .

(iii) Recall our definition of Nm. Let A = N2
5 . Find the Jordan form of A. Let B = N3

4 . Find the Jordan form of B.

(iv) Let A =


0 −16 0 0
1 8 0 0
0 0 0 −6
0 0 1 5

. Find the Jordan-form of A.
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HW 8, MTH 512, Spring 2015, Due date: May 16, 2015 at 3:00 pm

Ayman Badawi

QUESTION 1. (i) Let <,> be an inner product on a vector space V . Suppose that v1, v2 are NONZERO elements of
V such that v1 ⊥ v2. Prove that v1, v2 are independent.

(ii) Let <,> be the normal dot product on R3. Find two nonzero independent elements in R3 that are not orthogonal.

(iii) Let E be a subspace of a vector space V and assume that<,> is an inner product on V . Then E⊥ = {x ∈ V | x ⊥ e
for every e ∈ E}.

a. Prove that E⊥ is a subspace of V .

b. Find E ∩ E⊥.

c. Let B = {w1, ..., wk} be a basis for E. We know E = span{w1, ..., wk}. Prove that E⊥ = {y ∈ V | y ⊥ wi
for each i, 1 ≤ i ≤ k}.

d. Assume that B = {w1, ..., wk} is an orthogonal a basis for E. Let v ∈ E⊥ such that v 6= OV . Prove that
v = w + c1w1 + c2w2 + ...+ ckwk for some nonzero w 6∈ E and for some constantsc1, ..., ck ∈ R.

e. (converse of (d)). Let B = {w1, ..., wk} be an orthogonal basis for E. Let w 6∈ E. Prove that v = w −
proj

(w)
w1 − proj

(w)
w2 − · · · − proj

(w)
wk ∈ E⊥ (Note that in this part, it seems that I calculated the c1, ..., ck in part

(d), also this part, give you an algorithm on how to construct an orthogonal basis for E⊥).

f. If V is finite dimensional, say has dimension n, prove that dim(E⊥) = n− dim(E). Hence E+E⊥ = V and
dim(E +E⊥) = n[Hint: use part (e)]

(iv) Let <,> be the inner product on V = C[0, π/2] defined by < f1(x), f2(x) >=
∫ π/2

0 f1(x)f2(x) dx. Let E =
span{2, sin(x), cos(x)}. Find an orthogonal basis for E.( see class notes)

(v) Let A be a nonzero n×m matrix. Let E = Row(A). We know that Row(A) is a subspace of Rm. Under the normal
dot product on Rm, it is trivial to see (by staring and by part (c)) that Nul(A) = E⊥. Use this fact, to find all
vectors in R4 that are orthogonal to the vectors v1 = (1,−1, 2, 4), v2 = (−1, 1,−1, 8) ∈ R4 (here we still using the
normal dot product on R4).[Hint: form a matrix A with two rows v1, v2. Then Nul(A) is the set of all such vectors

(vi) Let Let <,> be an inner product on a vector space V . Let u, v ∈ V . Prove that (||u + v||)2 + (||u − v||)2 =
2||u||2 + 2||v||2.
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